Testing Blog

Intro to Ad Quality Test Challenges

Saturday, May 24, 2008
Alek Icev

I'd like to take a second and introduce you to the team testing the ads ranking algorithms. We'd like to think that we had a hand in the webs shift to a "content meritocracy". As you know the Google search results are unbiased by human editors, and we don't allow buying a spot at the top of the results list. This idea builds trust with users and allows the community to decide what's important.

Recently, we started applying the same concept to the online advertising. We asked ourselves how to bring the same level of "content meritocracy" to the online advertising where everybody pays to have ads being displayed on Google and on our partner sites. In other words, we needed to change a system that was predominately driven by human influence into one that build its merit based on feedback from the community. The idea was that we would penalize the ranking of paid ads in several circumstances: few users were clicking on a particular ads, an ad's landing page was not relevant, or if users don't like an ad's content. We want to provide our users with absolutely the most relevant ads for their click. In order to make our vision a reality we are building one of the largest online and real time machine learning labs in the world. We learn from everything: clicks, queries, ads, landing pages, conversions... hundreds of signals.

The Google Ad Prediction System brought new challenges to Test Engineering. The problem is that we needed to build the abstraction layers and metrics systems that allow us to understand if the system is organically getting better or regressing. Put another way, we started off lacking the decision tree or a perceptron that a bank or credit card company have embedded into their risk analysis, or the neural net that's behind all broken speech recognition, or the latest tweaks on expectation-maximization algorithms needed to predict the protein transcription in the cells. The amount and versatility of the data that Google Ad Prediction models learn is immense. The amount of time needed to make the prediction is counted in milliseconds. The amount of computing resources, ads databases and infrastructure needed to serve predictions on every ad that is showing today is beyond imagination. Our challenge is to train and test learning models, that span clusters of servers and databases, simulate ads traffic and having everything compiled and running from the latest code changes submitted to the huge source depot. And the icing on the cake is to run that on 24/7 schedule.

On top of all of the technical challenges, we are also challenging the industry definition of "testing" and are believers in automated tests that are incorporated upstream into the development process and run on continuous basis. Ads Quality Test Engineering Group at Google, works on a bleeding edge testing infrastructure to test, simulate and train Google Ads Prediction systems in real time.
Share on Twitter Share on Facebook
Google
Labels: Alek Icev

6 comments :

  1. Howard FoxMay 27, 2008 at 10:45:00 AM PDT

    In English, please

    ReplyDelete
    Replies
      Reply
  2. StuffDoneMay 27, 2008 at 10:58:00 AM PDT

    I see some issues I don't understand re. the ads because advertisers, not Google, pick keywords and landing pages. How would this rating be fed back into the look to help those purchasing ads?

    This sort of brings up the issue of link popularity because there seems to be a "chicken vs egg" matter.

    How does a link (or ad) gain popularity in the first place? If it is to be based on merit as demonstrated by links and if a site does not rate high enough to be found, how does anyone decide it the site rates a link in the first place?

    How will this same "Chicken vs. egg" issue be resolved with ads based on merit? If they are way down the list because they don't "rate" how does the buyer know this and how do they improve the ad?

    Are the ad prices going to be adjusted upward for higher rated ads and downward for lower rated?

    ReplyDelete
    Replies
      Reply
  3. Mastercraft ExteriorsMay 27, 2008 at 12:07:00 PM PDT

    Very Interesting Google!

    Can you give us some more feedback on what that will do to our current ads?

    Mastercraft Exteriors

    ReplyDelete
    Replies
      Reply
  4. AlekMay 29, 2008 at 5:24:00 PM PDT

    Reply to mastercraft_exteriors.
    All of the current ads are affected by the Quality scores that Google computes on them.
    Alek Icev

    ReplyDelete
    Replies
      Reply
  5. AlekMay 29, 2008 at 5:57:00 PM PDT

    Reply to stuffdone
    Check this out for the detailed pricing and ranking policy:
    http://www.google.com/adwords/learningcenter/
    And to answer quickly for the "chicken vs egg" question. We give fair chance to every new advertiser on which we don't have a past data to learn on. Also in the Adwords Learning center you can find some direction about the desired content of your ads and landing pages.
    Alek Icev

    ReplyDelete
    Replies
      Reply
  6. StuffDoneMay 30, 2008 at 6:24:00 AM PDT

    How about the "chicken n egg" as it relates to general search, not AdWords?

    ReplyDelete
    Replies
      Reply
Add comment
Load more...

The comments you read and contribute here belong only to the person who posted them. We reserve the right to remove off-topic comments.

  

Labels


  • TotT 104
  • GTAC 61
  • James Whittaker 42
  • Misko Hevery 32
  • Code Health 31
  • Anthony Vallone 27
  • Patrick Copeland 23
  • Jobs 18
  • Andrew Trenk 13
  • C++ 11
  • Patrik Höglund 8
  • JavaScript 7
  • Allen Hutchison 6
  • George Pirocanac 6
  • Zhanyong Wan 6
  • Harry Robinson 5
  • Java 5
  • Julian Harty 5
  • Adam Bender 4
  • Alberto Savoia 4
  • Ben Yu 4
  • Erik Kuefler 4
  • Philip Zembrod 4
  • Shyam Seshadri 4
  • Chrome 3
  • Dillon Bly 3
  • John Thomas 3
  • Lesley Katzen 3
  • Marc Kaplan 3
  • Markus Clermont 3
  • Max Kanat-Alexander 3
  • Sonal Shah 3
  • APIs 2
  • Abhishek Arya 2
  • Alan Myrvold 2
  • Alek Icev 2
  • Android 2
  • April Fools 2
  • Chaitali Narla 2
  • Chris Lewis 2
  • Chrome OS 2
  • Diego Salas 2
  • Dori Reuveni 2
  • Jason Arbon 2
  • Jochen Wuttke 2
  • Kostya Serebryany 2
  • Marc Eaddy 2
  • Marko Ivanković 2
  • Mobile 2
  • Oliver Chang 2
  • Simon Stewart 2
  • Stefan Kennedy 2
  • Test Flakiness 2
  • Titus Winters 2
  • Tony Voellm 2
  • WebRTC 2
  • Yiming Sun 2
  • Yvette Nameth 2
  • Zuri Kemp 2
  • Aaron Jacobs 1
  • Adam Porter 1
  • Adam Raider 1
  • Adel Saoud 1
  • Alan Faulkner 1
  • Alex Eagle 1
  • Amy Fu 1
  • Anantha Keesara 1
  • Antoine Picard 1
  • App Engine 1
  • Ari Shamash 1
  • Arif Sukoco 1
  • Benjamin Pick 1
  • Bob Nystrom 1
  • Bruce Leban 1
  • Carlos Arguelles 1
  • Carlos Israel Ortiz García 1
  • Cathal Weakliam 1
  • Christopher Semturs 1
  • Clay Murphy 1
  • Dagang Wei 1
  • Dan Maksimovich 1
  • Dan Shi 1
  • Dan Willemsen 1
  • Dave Chen 1
  • Dave Gladfelter 1
  • David Bendory 1
  • David Mandelberg 1
  • Derek Snyder 1
  • Diego Cavalcanti 1
  • Dmitry Vyukov 1
  • Eduardo Bravo Ortiz 1
  • Ekaterina Kamenskaya 1
  • Elliott Karpilovsky 1
  • Elliotte Rusty Harold 1
  • Espresso 1
  • Felipe Sodré 1
  • Francois Aube 1
  • Gene Volovich 1
  • Google+ 1
  • Goran Petrovic 1
  • Goranka Bjedov 1
  • Hank Duan 1
  • Havard Rast Blok 1
  • Hongfei Ding 1
  • Jason Elbaum 1
  • Jason Huggins 1
  • Jay Han 1
  • Jeff Hoy 1
  • Jeff Listfield 1
  • Jessica Tomechak 1
  • Jim Reardon 1
  • Joe Allan Muharsky 1
  • Joel Hynoski 1
  • John Micco 1
  • John Penix 1
  • Jonathan Rockway 1
  • Jonathan Velasquez 1
  • Josh Armour 1
  • Julie Ralph 1
  • Kai Kent 1
  • Kanu Tewary 1
  • Karin Lundberg 1
  • Kaue Silveira 1
  • Kevin Bourrillion 1
  • Kevin Graney 1
  • Kirkland 1
  • Kurt Alfred Kluever 1
  • Manjusha Parvathaneni 1
  • Marek Kiszkis 1
  • Marius Latinis 1
  • Mark Ivey 1
  • Mark Manley 1
  • Mark Striebeck 1
  • Matt Lowrie 1
  • Meredith Whittaker 1
  • Michael Bachman 1
  • Michael Klepikov 1
  • Mike Aizatsky 1
  • Mike Wacker 1
  • Mona El Mahdy 1
  • Noel Yap 1
  • Palak Bansal 1
  • Patricia Legaspi 1
  • Per Jacobsson 1
  • Peter Arrenbrecht 1
  • Peter Spragins 1
  • Phil Norman 1
  • Phil Rollet 1
  • Pooja Gupta 1
  • Project Showcase 1
  • Radoslav Vasilev 1
  • Rajat Dewan 1
  • Rajat Jain 1
  • Rich Martin 1
  • Richard Bustamante 1
  • Roshan Sembacuttiaratchy 1
  • Ruslan Khamitov 1
  • Sam Lee 1
  • Sean Jordan 1
  • Sebastian Dörner 1
  • Sharon Zhou 1
  • Shiva Garg 1
  • Siddartha Janga 1
  • Simran Basi 1
  • Stan Chan 1
  • Stephen Ng 1
  • Tejas Shah 1
  • Test Analytics 1
  • Test Engineer 1
  • Tim Lyakhovetskiy 1
  • Tom O'Neill 1
  • Vojta Jína 1
  • automation 1
  • dead code 1
  • iOS 1
  • mutation testing 1


Archive


  • ►  2025 (1)
    • ►  Jan (1)
  • ►  2024 (13)
    • ►  Dec (1)
    • ►  Oct (1)
    • ►  Sep (1)
    • ►  Aug (1)
    • ►  Jul (1)
    • ►  May (3)
    • ►  Apr (3)
    • ►  Mar (1)
    • ►  Feb (1)
  • ►  2023 (14)
    • ►  Dec (2)
    • ►  Nov (2)
    • ►  Oct (5)
    • ►  Sep (3)
    • ►  Aug (1)
    • ►  Apr (1)
  • ►  2022 (2)
    • ►  Feb (2)
  • ►  2021 (3)
    • ►  Jun (1)
    • ►  Apr (1)
    • ►  Mar (1)
  • ►  2020 (8)
    • ►  Dec (2)
    • ►  Nov (1)
    • ►  Oct (1)
    • ►  Aug (2)
    • ►  Jul (1)
    • ►  May (1)
  • ►  2019 (4)
    • ►  Dec (1)
    • ►  Nov (1)
    • ►  Jul (1)
    • ►  Jan (1)
  • ►  2018 (7)
    • ►  Nov (1)
    • ►  Sep (1)
    • ►  Jul (1)
    • ►  Jun (2)
    • ►  May (1)
    • ►  Feb (1)
  • ►  2017 (17)
    • ►  Dec (1)
    • ►  Nov (1)
    • ►  Oct (1)
    • ►  Sep (1)
    • ►  Aug (1)
    • ►  Jul (2)
    • ►  Jun (2)
    • ►  May (3)
    • ►  Apr (2)
    • ►  Feb (1)
    • ►  Jan (2)
  • ►  2016 (15)
    • ►  Dec (1)
    • ►  Nov (2)
    • ►  Oct (1)
    • ►  Sep (2)
    • ►  Aug (1)
    • ►  Jun (2)
    • ►  May (3)
    • ►  Apr (1)
    • ►  Mar (1)
    • ►  Feb (1)
  • ►  2015 (14)
    • ►  Dec (1)
    • ►  Nov (1)
    • ►  Oct (2)
    • ►  Aug (1)
    • ►  Jun (1)
    • ►  May (2)
    • ►  Apr (2)
    • ►  Mar (1)
    • ►  Feb (1)
    • ►  Jan (2)
  • ►  2014 (24)
    • ►  Dec (2)
    • ►  Nov (1)
    • ►  Oct (2)
    • ►  Sep (2)
    • ►  Aug (2)
    • ►  Jul (3)
    • ►  Jun (3)
    • ►  May (2)
    • ►  Apr (2)
    • ►  Mar (2)
    • ►  Feb (1)
    • ►  Jan (2)
  • ►  2013 (16)
    • ►  Dec (1)
    • ►  Nov (1)
    • ►  Oct (1)
    • ►  Aug (2)
    • ►  Jul (1)
    • ►  Jun (2)
    • ►  May (2)
    • ►  Apr (2)
    • ►  Mar (2)
    • ►  Jan (2)
  • ►  2012 (11)
    • ►  Dec (1)
    • ►  Nov (2)
    • ►  Oct (3)
    • ►  Sep (1)
    • ►  Aug (4)
  • ►  2011 (39)
    • ►  Nov (2)
    • ►  Oct (5)
    • ►  Sep (2)
    • ►  Aug (4)
    • ►  Jul (2)
    • ►  Jun (5)
    • ►  May (4)
    • ►  Apr (3)
    • ►  Mar (4)
    • ►  Feb (5)
    • ►  Jan (3)
  • ►  2010 (37)
    • ►  Dec (3)
    • ►  Nov (3)
    • ►  Oct (4)
    • ►  Sep (8)
    • ►  Aug (3)
    • ►  Jul (3)
    • ►  Jun (2)
    • ►  May (2)
    • ►  Apr (3)
    • ►  Mar (3)
    • ►  Feb (2)
    • ►  Jan (1)
  • ►  2009 (54)
    • ►  Dec (3)
    • ►  Nov (2)
    • ►  Oct (3)
    • ►  Sep (5)
    • ►  Aug (4)
    • ►  Jul (15)
    • ►  Jun (8)
    • ►  May (3)
    • ►  Apr (2)
    • ►  Feb (5)
    • ►  Jan (4)
  • ▼  2008 (75)
    • ►  Dec (6)
    • ►  Nov (8)
    • ►  Oct (9)
    • ►  Sep (8)
    • ►  Aug (9)
    • ►  Jul (9)
    • ►  Jun (6)
    • ▼  May (6)
      • Performance Testing of Distributed File Systems at...
      • TotT: The Invisible Branch
      • Intro to Ad Quality Test Challenges
      • Exploratory Testing on Chat
      • TotT: Using Dependancy Injection to Avoid Singletons
      • TotT: Testable Contracts Make Exceptional Neighbors
    • ►  Apr (4)
    • ►  Mar (4)
    • ►  Feb (4)
    • ►  Jan (2)
  • ►  2007 (41)
    • ►  Oct (6)
    • ►  Sep (5)
    • ►  Aug (3)
    • ►  Jul (2)
    • ►  Jun (2)
    • ►  May (2)
    • ►  Apr (7)
    • ►  Mar (5)
    • ►  Feb (5)
    • ►  Jan (4)

Feed

  • Google
  • Privacy
  • Terms